人工智能可诊断乳腺癌
2017-11-01 抗癌健康网
专注健康 关爱生命据新华社香港9月6日电香港中文大学6日宣布,该校研究团队利用人工智能影像识别技术判读肺癌及乳腺癌的医学影像,准确率分别达91%及99%,识别过程只需30秒至10分钟。研究人员称,此项技术可大幅提升临床诊断效率,并降低误诊率。
据介绍,该团队采用深度学习技术判读CT扫描图像,通过深层神经网络自动检测识别出可能出现肺小结节的位置,耗时30秒,准确率高达91%。
对于乳腺癌的检测,王平安表示,团队开发的一种新型的深层卷积神经网络,分阶段处理乳腺癌的切片图像。首先,使用改良版的全卷积网络(一种对图像进行较粗略但保持高灵敏度的快速预测模型),重构出更为精密准确的预测结果,然后定位并挑选出含有淋巴结转移的图像。对比资深病理医生人工检测结果,该项自动化检测的准确度高出2%,达到98.75%,耗时只需5至10分钟。
据悉,该团队于5年前展开相关实验。王平安表示,期望在未来的1至2年,这项自动化监测技术能在香港医疗界广泛应用。
据新华社香港9月6日电香港中文大学6日宣布,该校研究团队利用人工智能影像识别技术判读肺癌及乳腺癌的医学影像,准确率分别达91%及99%,识别过程只需30秒至10分钟。研究人员称,此项技术可大幅提升临床诊断效率,并降低误诊率。
据介绍,该团队采用深度学习技术判读CT扫描图像,通过深层神经网络自动检测识别出可能出现肺小结节的位置,耗时30秒,准确率高达91%。
对于乳腺癌的检测,王平安表示,团队开发的一种新型的深层卷积神经网络,分阶段处理乳腺癌的切片图像。首先,使用改良版的全卷积网络(一种对图像进行较粗略但保持高灵敏度的快速预测模型),重构出更为精密准确的预测结果,然后定位并挑选出含有淋巴结转移的图像。对比资深病理医生人工检测结果,该项自动化检测的准确度高出2%,达到98.75%,耗时只需5至10分钟。
据悉,该团队于5年前展开相关实验。王平安表示,期望在未来的1至2年,这项自动化监测技术能在香港医疗界广泛应用。